Vol. 66, 2001

Xiang Wang, Harinath Chakrapani, Carmine N. Stengone, and Ross A. Widenhoefer*. Synthesis of Carbobicyclic Compounds via Palladium-Catalyzed Cyclization/Hydrosilylation: Evidence for Reversible Silylpalladation

Page 1758, Table 2. The relative stereochemistry of the bicyclopentanes **23**, **24**, **26**, **28**, and **30** was depicted incorrectly. The corrective relative stereochemistry of these compounds is shown below. We thank Dr. William C. Trenkle for drawing our attention to this error.

23 (E = CO_2Me , X = CH_2 , R' = Me, R₃ = Et_3) 24 (E = CO_2Me , X = CH_2 , R' = Me, R₃ = Me_2Bn) 26 (E = CH_2OPiv , X = CH_2 , R' = Me, R₃ = Et_3) 28 (E = CO_2Me , X = CMe_2 , R' = Me, R₃ = Et_3) 30 (E = CO_2Me , X = CH_2 , R' = Et, R₃ = Et_3)

JO015717Z

10.1021/jo015717z Published on Web 10/12/2001

Gary M. Green Norton P. Peet, and William A. Metz*.Polystyrene-Supported Benzenesulfonyl Azide: A Diazo Transfer Reagent That Is Both Efficient and Safe.

Page 2510. In the general procedure for diazo transfer using polystyrene-supported benzenesulfonyl azide **1**, a disposable all-polypropylene syringe was used.

Differential scanning calorimetry (DSC) was performed on the 4-carboxybenzenesulfonyl azide (p-CBSA) for comparison with that of the polymer-supported benzenesulfonyl azide **1**. It was found that although both compounds have roughly the same temperature maximum for the exotherm (190.0 °C for p-CBSA and 192.7 °C for **1**) there is almost a 4-fold difference in the energy released for p-CBSA (1133 J/g) versus that for **1** (275 J/g).

Supporting Information Available: DSC trace of *p*-CBSA. This material is available free of charge via the Internet at http://pubs.acs.org.

JO015939X

10.1021/jo015939x Published on Web 10/16/2001